Journées Nationales du GDR Informatique Mathématique
Cnam, Paris (France)
Synthesis of Boolean Networks from Biological Dynamical Constraints using Answer-Set Programming
Stéphanie Chevalier  1@  , Christine Froidevaux  1  , Loïc Paulevé  2  , Andrei Zinovyev  3, 4  
1 : Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud, Université Paris-Saclay, Laboratoire de Recherche en Informatique, CNRS UMR 8623, Orsay, France
2 : Laboratoire Bordelais de Recherche en Informatique (LaBRI)
CNRS UMR 5800, Université de Bordeaux (Bordeaux, France), Bordeaux-INP
3 : Institut Curie  (CURIE)  -  Site web
Institut Curie
26 rue d'Ulm 75248 PARIS CEDEX 05 -  France
4 : Cancer et génôme: Bioinformatique, biostatistiques et épidémiologie d'un système complexe  (INSERM U900)  -  Site web
Inserm : U900, Institut Curie, MINES ParisTech - École nationale supérieure des mines de Paris
26 rue d'Ulm - 75248 Paris cedex 05 -  France

We rely on Answer-Set Programming to express the synthesis of discrete dynamical models (Boolean networks) from biological dynamical constraints. This inference from knowledge and data confronts both a combinatorial issue and a high complexity, while Boolean networks constitute easy-understandable modeling to guide research on biological processes.

We offer a scalable method addressing types of data beyond the scope of previous approaches while allowing exhaustiveness. We implemented new constraints to ensure stable behaviors, positive and negative reachability between observations of the system. This contribution is described in our paper published in ICTAI 2019.

We are currently working on the encoding of constraints enabling the check of global properties, describable by quantified Boolean formulas.


Personnes connectées : 27 Vie privée
Chargement...